拉伸纪(1000-720 Ma)是早期真核生物演化的关键时期,深入探究这一时期的古环境,特别是古海洋的氧化还原状态,对于我们理解早期真核生物与环境之间的协同演化关系具有重要意义。近年来,中国科学院南京地质古生物研究所早期生命研究团队对华北板块东缘胶辽徐淮地区的新元古代拉伸纪早期地层开展了系统的沉积学和地球化学研究,发现在拉伸纪早期的徐淮盆地,当中深层海水已经呈现为氧化/弱氧化的状态时,浅水地区却始终发育缺氧和铁化的水体。拉伸纪早期独特的海洋氧化还原结构与现代海洋的最小含氧带具有很强的相似性。相关研究成果于2025年1月16日在线发表于《自然-通讯》(Nature Communications)上。
图1 淮南群和肥水群综合柱状图及地球化学数据
元古宙中期海洋的氧化还原结构及其控制因素始终存在争议。传统观点普遍认为大氧化事件结束后,元古宙中期的海洋除极表层的水体含氧之外,从浅层到中深层的大部分水体都维持了缺氧的状态。虽然近年来一系列的研究成功证实了中元古代海洋中氧化水体的存在,但是对于这一时期氧化水体的形成机制以及紧随其后的拉伸纪海洋中是否仍存在氧化水体一直未有明确的结论。
华北板块东缘的胶辽徐淮地区保存有良好的中元古代晚期到新元古代早期地层,为我们探究上述问题提供了良好的研究材料。本次研究主要针对沉积于徐淮盆地的淮南群、肥水群和淮北群展开。通过沉积学工作及一系列氧化还原指标分析,研究人员发现在拉伸纪早期,徐淮盆地的海水并非全部处于缺氧的状态,其氧化还原状态与沉积深度表现出明显的相关性。沉积于近岸浅水地区的碳酸盐岩记录了底层水体持续缺氧的信号,而远岸地区中深水的泥岩则普遍沉积于氧化或弱氧化的环境中。
图2 徐淮盆地拉伸纪地层铁组分数据交汇图
古海洋初级生产力指标进一步表明初级生产力的变化是造成徐淮盆地海水氧化还原状态空间异质性的关键因素。远岸地区较低的初级生产力能够有效降低有机质降解过程的氧气消耗,使氧气能够扩散到中深层水体。与之相反,近岸碳酸盐岩台地地区较高的初级生产力则会迅速消耗海水中的溶解氧,最终导致浅海地区的广泛缺氧。
拉伸纪早期徐淮盆地古海洋的氧化还原结构与现代海洋的最小含氧带结构具有很好的相似性,但不同之处在于,现代海洋的最小含氧带主要发育于大陆边缘地区的中深部水体,而徐淮盆地的最小含氧带则发育于浅水碳酸盐岩台地环境。持续含氧的中深层水体很有可能为真核生物随后的繁盛奠定了相应的环境基础。
图3 徐淮盆地拉伸纪早期海洋氧化还原结构示意图
本研究得到国家自然科学基金、国家重点研发计划和古生物学与油气地层应用全国重点实验室联合资助。
本次科普宣传与策划得到科技部国家重点研发计划青年科学家项目(2022YFF0802700)支持。
论文相关信息:
Sun, Y., Wang, W., Lang, X., Guan, C., Ouyang, Q., Pang, K., Li, G., Hu, Y., Shi, H., Zhao, X., Zhou, C.* 2025. A shallow-water oxygen minimum zone in an oligotrophic Tonian basin. Nature Communications, 16: 725.
https://doi.org/10.1038/s41467-025-55881-3.